Confronting the Evil Dwarves

With Tim Gaiser, MS - August 15, 2019

Today's Session

- Evil dwarves: easily confused grape varieties/wines
- Highlight key ID markers for each
- Emphasis on impact compounds
- Importance of consistent calibration of structural elements:
 - Levels of acidity, alcohol, tannin, and phenolic bitterness
- Strategies:
 - Calibrating with extremes
 - Using a control wine an outlier
 - Strategies for tasting practice

Today's Wines

- 1. 2017 Pazo Senorans Albariño, Rias Biaxas
- 2. 2017 Alzinger Grüner Veltliner Federspiel, Ried Mühlpoint
- 3. 2012 Pewsey Vale Riesling, Eden Valley
- 4. 2016 Willm Gewurztraminer, Alsace
- 5. 2017 Domaine Jean Foillard Beaujolais Village
- 6. 2016 Casaloste Chianti Classico
- 7. 2010 Bodegas Lan Gran Reserva Rioja
- 8. 2016 La Bastide St. Vincent Gigondas

Challenges posed by the Evil Dwarves...

- Similar-same color
- Similar-same fruit expression
- The use of oak—or not

What's important?

• Impact compounds

Combining impact compounds and structural assessment

Keys to Structural Assessment

 Accurately calibrating the levels of alcohol, acidity, phenolic bitterness, and tannin

• Connecting the dots: using **cause** and **effect** to deduce a wine's origin, climate, and style

• *Fruit character/quality

Impact Compounds

- A subset of aromas/flavors in wine that can be objectively found and quantified
- The result of grape variety, environment, or winemaking
- Vital for the professional taster in terms of recognition and memory of classic grapes and wines

Impact Compounds: White Wines

- Terpenes
- Lees contact
- Phenolic bitterness
- Rotundone

- Botrytis
- Pyrazines
- Diacetyl
- Use of new oak

• TDN

8/18/2019

• Monoterpenes: a family of compounds responsible for the highly aromatic, floral, and sweet citrus notes in wine

• Usually located in grape skins and accumulate during ripening

Common Terpenic Compounds

• Rose oxide: found in roses and rose oil; responsible for

Gewürztraminer's rose and litchi notes

- Linalool: slightly spicy, highly floral Muscat grapes
- Geraniol: the scent of geraniums and lemon
- Nerol: the scent of roses and orange
- Alpha-terpeniol: grapey, pine-like aromas associated with lowerquality Torrontés from Argentina

Terpenic Grape Varieties

- Medium terpenes:
 - Albariño: with phenolic bitterness and lees
 - **Riesling**: with possible TDN and possible botrytis
- Medium terpenes and higher alcohol:
 - Viognier: possible ML and oak usage
 - Torrontés: medium-plus acidity

Terpenic Grape Varieties

- High terpenes:
 - Gewurztraminer: less acidity and high alcohol

• Muscat: elevated acidity and relatively less alcohol

Lees Contact

• Aromas and flavors resulting from contact with fine lees after primary

and/or secondary fermentation

- Autolysis: gradual breakdown of lees over time
- Smells like: yeast, brioche, bread dough, toast
- Also adds a richer, creamier texture to the wine

Lees Contact

 Important method in Chardonnay production as well as Muscadet, Pinot Grigio, Grüner Veltliner, Albariño, and some dry Rieslings

 Also important component in classic method sparkling wine production

Phenolic Bitterness

• Phenols: family of over 300 related compounds

• Found in grape skins

• Derived from skin contact pre-, during, or postfermentation

Phenolic Bitterness & Varieties

• Italian Pinot Grigio and Alsace Pinot Gris: medium aromatics with phenolic bitterness

• Albariño and Grüner Veltliner: high aromatics, medium alcohol, and phenolic bitterness

• **Viognier** and **Gewürztraminer:** high aromatics and high alcohol with pronounced phenolic bitterness

Warning! Phenolic bitterness vs. used oak in white wines

Rotundone

- Peppery aroma found in certain white and red grapes
- Derived from a chemical compound called a *sesquiterpene*
- Accumulates in grape skins increasing in concentration

between véraison and harvest

- White wines: Grüner Veltliner
- Not to be confused with pyrazines!

TDN

 Source of the petrol or kerosene character most commonly associated with Riesling

• From a family of volatile compounds called norisoprenoids

• Technically: 1,1,6-trimethyl-1,2-dihydronaphthalene

• First isolated by German scientists in 2006

TDN

- AWRI study: high concentration of TDN to be the result of a short, hot, ripening cycle (Eden and Clare Valleys)
- TDN transforms into other compounds in wines produced in regions with a longer ripening cycle and a cooler climate German term "Ferne"
- Other factors: combination of water stress, nitrogen deficiency, specific yeast strains, and clonal selection all affect development of TDN*
- *Dr. Hans Schultz, President Geisenheim University

Botrytis

- Mold is responsible for many of the world's great dessert wines:
 - Sauternes, Hungarian Tokaji, and Trockenbeerenauslese from Germany and Austria
- Source: vineyard soil
- Smells like: honey/honeysuckle, ripe/over-ripe stone fruits, marmalade, toffee, and ginger

Non-Dessert Botrytis Wines

- Botrytis character also found in non-dessert wines:
 - Alsace Pinot Gris and Riesling
 - Loire Valley Chenin Blanc (Vouvray)
 - German Grosses Gewächs Riesling
 - And more...

• Pyrazines: aromatic organic compound

• Smells like: bell pepper, asparagus, jalapeño, grass, green herb

Look for it: Cabernet family grapes including Sauvignon
Blanc

Diacetyl

• By-product of malo-lactic fermentation/conversion

• Responsible for the butter/dairy notes in Chardonnay and actual flavor of butter

• Important to recognize not only Chardonnay-based wines but Chardonnay-treatment winemaking as well (CA Viognier)

- Imparts wide range of aromas and flavors:
 - Vanilla, baking spices, chocolate, coconut, dill, smoke, toast, coffee, tea, and more

 Vital that the student/taster be able to identify the markers of new oak vs. a wine without oak-aging I. 2017 Pazo Senorans Albariño, Rias Biaxas

Winery and Wine Info

- Appellation: Rias-Baixas
- Variety: 100% Albariño
- Age of vines: 10-50 years
- Altitude: 300 meters
- Sustainable farming
- Soil: sand and granite
- Hand harvesting
- Fermented in tank and aged four months

Albariño: Compounds & Structure

- Impact compounds:
 - Terpenes white flowers and sweet citrus
 - Lees contact
 - Phenolic bitterness
- Structure:
 - Acidity: M+
 - Alcohol: M / M+

- Other considerations:
 - Mineral notes
- Keys: terpenes, lees contact, phenolic bitterness

II. 2017 Alzinger Grüner Veltliner Federspiel, Ried Mühlpoint, Wachau

Winery and Wine Info

- Estate: 10 hectares in Unterloiben, Wachau
- First vintage 1983
- Variety: 100% Grüner Veltliner
- Soils: weathered sandstone and gneiss
- Organic farming
- Hand-harvesting
- Stainless steel ferment

Grüner Veltliner: Compounds & Structure

- Impact compounds:
 - Rotundone pepper
 - Lees contact
 - Phenolic bitterness
 - Possible botrytis in Smaragd wines
- Structure:
 - Acidity: M+ / H
 - Alcohol: M / H

- Other considerations:
 - Appellation and classification
 - Vegetal qualities and mineral notes
- Keys: rotundone, vegetal notes, possible botrytis, phenolic bitterness

III. 2012 Pewsey Vale Riesling, Eden Valley

Winery and Wine Info

- Location: Eden Valley
- Original vineyard planted 1860 replanted 1961
- Elevation: 1,250-1,500 ft.
- Variety: 100% Riesling
- Wild yeast ferment stainless steel

Riesling: Compounds & Structure

- Impact compounds:
 - TDN
 - Lees contact
 - Phenolic bitterness

- Other considerations:
 - Pronounced mineral quality

• Keys: TDN, dominant mineral, and high acidity

- Structure:
 - Acidity: <u>H</u>
 - Alcohol: M / M+
 - Very dry to bone dry

IV. 2016 Willm Gewurztraminer, Alsace

Winery and Wine Info

- Estate founded in 1896 in Barr, Alsace
- Variety: 100% Gewurztraminer
- Sustainable farming
- Hand harvesting
- Stainless steel ferment
- Maturing on the fine lees for 2-3 months
Gewurztraminer: Compounds & Structure

- Impact compounds:
 - Pronounced terpenes
 - Pronounced phenolic bitterness
 - Possible botrytis
- Structure:
 - Acidity: M-/M
 - Alcohol: M / H
 - Possible residual sugar

- Other considerations:
 - Earth and mineral notes
- Keys: a fully aromatic grape/wine: overtly terpenicfloral with possible botrytis, residual sugar, and pronounced phenolic bitterness

Comparative Tasting

I. 2017 Pazo Senorans Albariño, Rias Biaxas

Why It's Not: Grüner Veltliner

- Higher level of terpenes
- Lack of white pepper-rotundone
- Lack of vegetal qualities
- Lack of botrytis character often found Smaragd wines

Why It's Not: AUS Riesling

• Lacks TDN

• Lees contact vs. Riesling

• Higher terpenes

• Limestone mineral quality in the Riesling

Why It's Not: Gewurztraminer

- Semi-aromatic grape vs. fully aromatic grape
- Less terpenes
- Less phenolic bitterness
- Possible **botrytis** character in Gewurztraminer
- Possible **residual sugar** in Gewurztraminer
- Structure: higher alcohol and far less acidity in the Gewurztraminer

II. 2017 Alzinger Grüner Veltliner Federspiel, Ried Mühlpoint, Wachau

Why It's Not: Albariño

- Less terpenic
- Rotundone/pepper notes
- Vegetal notes
- Lees contact?
- If a Smaragd wine, no botrytis character

Why It's Not: AUS Riesling

- Lack of TDN
- Rotundone/pepper notes
- Vegetal notes

- Inconsistent use of lees contact in AUS Riesling
- Higher acidity in the Riesling

Why It's Not: Gewurztraminer

- Semi-aromatic vs. fully aromatic grape
- Less terpenic
- Less phenolic
- Possible botrytis character in Gewurztraminer
- Possible residual sugar in Gewurztraminer
- Structure: higher alcohol and lower acidity in the Gewurztraminer

III. 2012 Pewsey Vale Riesling, Eden Valley

Why It's Not: Albariño

- No TDN in Albariño
- Lees contact more prevalent in Albariño
- Wider fruit profile in Albariño
- **Different mineral character** limestone in Riesling

Why It's Not: Grüner Veltliner

- Presence of TDN
- No rotundone pepper/vegetal
- Higher acidity in the Riesling

Why It's Not: Gewürztraminer

- Riesling not a fully aromatic grape
- Less terpenic
- Less phenolic
- Possible **botrytis** character in Gewürztraminer
- Possible **residual sugar** in Gewürztraminer
- Structure: higher alcohol and lower acidity in the Gewürztraminer

IV. 2016 Willm Gewurztraminer, Alsace

Why It's Not: Albariño

- Semi-aromatic grape vs. a fully aromatic grape
- Gewurztraminer more **terpenic**
- Gewurztraminer more **phenolic**
- Possible **botrytis** character in Gewurztraminer
- Possible **residual sugar** in Gewurztraminer
- Structure: less alcohol and higher acidity in the Albariño

Why It's Not: Grüner Veltliner

- Lack of **rotundone/pepper qualities**
- Unless a Smaragd wine, **Gewurztraminer usually a richer wine** (alcohol, dry extract)
- Higher phenolics in Gewurztraminer
- Often higher alcohol compared to Grüner Veltliner
- Less acidity ompared to Grüner Veltliner
- Rare residual sugar in Grüner Veltliner

Why It's Not: AUS Riesling

- Lack of TDN
- Semi-aromatic grape vs. a fully aromatic grape
- More terpenic
- More **phenolic**
- Possible **botrytis** character
- Possible residual sugar
- Structure: higher alcohol and lower acidity

Impact Compounds and Red Wines

Impact Compounds: Red Wines

- Carbonic maceration
- Stem inclusion
- High VA
- Raisination

- Use of new oak
- Rotundone
- Brettanomyces
- Pyrazines

Carbonic Maceration

- Winemaking technique often associated with **Beaujolais**
- Extracts maximum color and fruit without excessive

tannins

• Carbonic wines described as **candied** or **artificial – Jolly**

Rancher – Hawaiian Punch

Carbonic Maceration

• Wines also display green stemmy notes as stems are naturally

included during fermentation

• Also often used for Côte du Rhône red wines, inexpensive

commercially produced Australian Shiraz and Shiraz blends

Stem Inclusion

- Use of stems during fermentation
- Common in red winemaking in Burgundy & Beaujolais
- **Beaujolais**: stem inclusion is the result of carbonic and semicarbonic maceration
- Aromas and flavors best described as green and woody

• Volatile acidity – acetic acid: by-product of fermentation and

therefore present in all wines in trace amounts

• Detectable acetic acid is **usually** considered a **flaw***

High VA & Context

- *Exception: certain classic styles of classic Old World wines
 - Barolo, traditional Rioja, and others
 - Viewed as an acceptable facet of wine style

Raisination

• Cause: can originate from a number of

different sources:

- Grape varieties that ripen **unevenly**
- Wine made from **over-ripe** grapes
- Wine made from **dried** grapes

Raisination: Styles of Wine

- New World: Zinfandel, Cabernet Sauvignon, and Syrah/Shiraz (also elevated alcohol and diminished acidity)
- Old World: certain Italian red wines, Recioto della Valpolicella Amarone and other passito wines (Passito di Pantelleria)
- Sweet fortified dessert wines such as Sherry, Port, and vin doux naturels

Rotundone

- Syrah:
 - Old World: St.-Joseph /Crozes-Hermitage as

well as Côte-Rotie, Cornas, & Hermitage

- New World: Syrah/Shiraz from California and Australia
- Also be found in **Zinfandel** and **Mourvèdre** as well

as Italian varieties Schioppettino and Vespolina

Brettanomyces bruxellensis (Dekkora)

- Origin: vineyard soils
- Cause: barrels, tanks, and winery environment
- Smells like: barnyard, animals, fecal, and Band Aid

- Threshold for detecting brett (tolerance, acceptance, preference) varies dramatically with the individual: zero-tolerance to strong preference
- Context!!!

Brettanomyces (Dekkora)

 Important to be able to detect Brett-related aromas and connect them to possible wines/origins

 Often associated to old school European wines -Bordeaux, Burgundy, and Rhône wines (both the North and South)

Tasting Red Wines

IV. 2017 Domaine Jean Foillard Beaujolais Village

Winery and Wine Info

- Jean Foillard took over family estate in 1980
- Located in the Côte du Py
- Soils: granite and schist
- Vine age: 20-55 years
- Organic farming hand-harvesting
- Natural whole cluster ferment in concrete
- Aged 7 months
- Bottled unfined unfiltered

Beaujolais Villages: Compounds & Structure

- Impact compounds:
 - Carbonic maceration
 - Stem tannin
- Structure:
 - Acidity: M+
 - Alcohol: M
 - Tannin: M- / M

- Other considerations:
 - Mineral notes
- Keys: candied/confected fruit quality from carbonic and stem inclusion

VI. 2016 Casaloste Chianti Classico

Winery and Wine Info

- Located in the Greve commune
- 27 acres planted
- Varieties: 90% Sangiovese, 10% Merlot
- Stainless steel ferment
- Aging 12 mos. in Slavonian oak
Sangiovese: Compounds & Structure

- Impact compounds:
 - VA
 - Oxidative notes
- Structure:
 - Acidity: M+ / H
 - Alcohol: M / M+
 - Tannin: M+

- Other considerations:
 - Grape vs. oak tannins
- Keys: possible VA, tart fruit, and tannin structure (grape tannins)

VII. 2010 Bodegas Lan Gran Reserva Rioja

Winery and Wine Info

- Location: Rioja Alta/Alavesa
- Estate founded in 1972
- 72 hectares
- Vine age: 20-60 years
- Soils: chalk clay
- Varieties: 94% Tempranillo and 6% Mazuelo
- Aging: 24 mos. in barrel (American and French oak) and 36 mos. in bottle

Tempranillo - Rioja: Compounds & Structure

- Impact compounds:
 - Oxidation
 - Raisination
 - American oak
- Structure:
 - Acidity: M+
 - Alcohol: M+
 - Tannin: M / M+

- Other considerations:
 - Mineral notes

• Keys: oxidative character with raisinated fruit and American oak VIII. 2016 La Bastide St. Vincent Gigondas

Winery and Wine Info

- Laurent Daniel owner-winemaker
- Varieties: 80% Grenache, 10% Mourvèdre, and 10% Syrah
- Vine age: average 38 years
- Soils: black marl, lime, and weathered stone
- Natural ferment in enamel-concrete vats
- Aging: 12-15 mos. in large casks

Rhône Grenache Blend: Compounds & Structure

- Impact compounds:
 - Rotundone
 - Raisination
 - Possible Brettanomyces
 - Sanguine notes
- Structure:
 - Acidity: M+
 - Alcohol: H
 - Tannin: M+ / H

- Other considerations:
 - Earth-mineral notes
- Keys: pepper/rotundone, sanguine elements, and high alcohol

Comparative Tasting

IV. 2017 Domaine Jean Foillard Beaujolais Village

Why It's Not: Sangiovese – Chianti Classico

- Carbonic notes in Beaujolais vs. Chianti Classico
- Stem inclusion in Beaujolais vs. Chianti Classico
- No VA
- Lower tannin vs. Chianti Classico
- Lower acidity vs. Chianti Classico
- Use of **barrique** in Chianti Classico

Why It's Not: Tempranillo – Rioja Gran Riserva

- Carbonic notes
- Stem inclusion
- Little if any oak influence in Beaujolais
- American oak in Rioja
- Oxidative and raisinated fruit character in Rioja
- No VA

Why It's Not: Rhône Grenache Blend

- Carbonic notes
- Stem inclusion
- Pepper/rotundone in Grenache blend
- Sanguine notes in Grenache blend
- Lower alcohol in Beaujolais
- Less tannin in Beaujolais

VI. VI. 2016 Casaloste Chianti Classico

Why It's Not: Gamay – Beaujolais Villages

- No carbonic character
- No stem inclusion
- Higher acidity in Sangiovese
- Higher tannin in Sangiovese grape tannin!
- Frequent use of **barrique** in Chianti Classico

Why It's Not: Tempranillo – Rioja Gran Riserva

- Less oxidative
- No raisinated fruit
- Higher acidity
- Higher tannin
- No American oak character

Why It's Not: Rhône Grenache Blend

- Lack of pepper/rotundone
- Lack of sanguine notes
- Less alcohol than Grenache blends
- Higher acidity than Grenache blends
- Oak regiment: use of barrique vs. larger cooperage

VII. 2010 Bodegas Lan Gran Reserva Rioja

Why It's Not: Gamay – Beaujolais Villages

- No carbonic character
- No stem inclusion
- Oxidative character
- Raisinated fruit character
- Use of American Oak

Why It's Not: Sangiovese – Chianti Classico

- Oxidative and raisinated character
- Use of American Oak
- Usually less acidity than Sangiovese
- Less tannic vs. Sangiovese grape tannin!

Why It's Not: Rhône Grenache Blend

- Oxidative character
- Use of American Oak
- Lack of rotundone/pepper character
- Lack of sanguine character
- Less alcohol than Grenache blend

VIII. 2016 La Bastide St. Vincent Gigondas

Why It's Not: Gamay – Beaujolais Villages

- No carbonic character*
- No stem inclusion
- Rotundone/pepper notes
- Sanguine notes
- Higher alcohol
- Higher tannin

Why It's Not: Sangiovese – Chianti Classico

- Rotundone/pepper notes
- Sanguine notes
- Higher alcohol
- Different tannin structure Sangiovese has higher grape tannin
- Oak usage: barrique vs. large cooperage

Why It's Not: Tempranillo – Rioja Gran Riserva

- Less oxidative
- No American oak character
- Rotundone/pepper notes
- Sanguine notes
- Higher alcohol

Going forward:

Strategies for Practice and Memory

Get a Coravin

Taste wines in pairs

Calibrate pairs by using extremes

Blog post:

<u>http://www.timgaiser.com/blog/tasting-strategies-label-check-and-calibrating-with-extremes</u>

Exhibit "A"

Pairs and Extremes: Compounds and Winemaking

- Oak vs. no oak: Chablis vs. CA Chardonnay
- Non-ML vs. ML: Chablis vs. CA Chardonnay

• Used oak vs. phenolics: Vouvray Sec vs. Alsace Gewurztraminer

Pairs and Extremes: Compounds and Winemaking

- Mineral vs. no mineral: Chablis vs. CA Chardonnay
- TDN vs. botrytis: AUS Riesling vs. Alsace Gewurztraminer
- Carbonic vs. no carbonic: Beaujolais Villages vs. village-level

Red Burgundy

Pairs and Extremes: Structure

- Acidity lower vs high: Alsace Gewurztraminer vs. AUS Riesling
- Alcohol low vs. high: Mosel Riesling vs. Central Coast Viognier
- Tannin low vs. high: Beaujolais Villages vs. Barolo
- Phenolics low vs. high: Chablis vs. Alsace Gewurztraminer

Use an easy "control" wine

Example: New Zealand Sauvignon Blanc, oaked CA Chardonnay, etc.

Non-Tasting Sensory Work

Memory work away from actual tasting

http://www.timgaiser.com/blog/lieder-ohneworte-associative-rehearsal-and-tasting

Non-Tasting Sensory Work

Daily practice of your memories of common aromas—and impact compounds

Internal images and olfactory memory: working with submodalities: Structural qualities of internal images

<u>http://www.timgaiser.com/blog/submodali</u> <u>ties-the-structure-of-thought-the-fabric-of-</u> <u>experience</u>

Thank You!

- <u>www.timgaiser.com</u>
- <u>www.timgaiser.com/blog</u>